Рассмотрим несколько примеров решения таких задач.
Задача 1. Дано:
. Найти
.
Решение.
.
Ответ:
[25].
Задача 2. Дано:
,
. Найти
.
Решение.
;
;
.
Ответ: 205,9 .
Упражнений такого вида достаточно в учебных пособиях для девятого класса. Они являются самыми простыми и рассматриваются на первых уроках решения задач на прогрессии.
2. Задачи, в которых по заданной зависимости между членами арифметической и геометрической прогрессий (или одной из них), требуется найти сами прогрессии.
Рассмотрим несколько примеров решения таких задач.
Задача 1. В арифметической прогрессии
выполняется
,
. Найдите
и
.
Решение:
![]()

![]()

![]()

![]()
Ответ:
,
[1].
Задача 2. Дано:
– арифметическая прогрессия,
Найдите
и
d.
Решение. 
![]()

![]()

![]()
Ответ:
,
.
При решении задач этого вида полезно разнообразить содержание, рассмотрев, например, случай, когда разность (знаменатель) прогрессии есть иррациональные числа. Часто очень помогает решению задач использование характеристических свойств прогрессий, доказательство которых само по себе составляет прекрасную задачу.
Другие статьи:
Безнадзорность несовершеннолетних как социально-педагогическая проблема
Социальные потрясения во всем мире и в России, в частности, сопровождаются повсеместным ростом девиантного поведения в молодежной среде. На сегодняшний день остается актуальной проблема безнадзорности, как одна из форм проявления девиации. Судьба безнадзорника трагична, его развитие деформировано. В реальной ...
Психолого-педагогическая характеристика дошкольников с общим недоразвитием
речи
Общее недоразвитие речи – различные сложные речевые расстройства, при которых у детей нарушено формирование всех компонентов речевой системы, относящихся к ее звуковой и смысловой стороне, при нормальном слухе и интеллекте. Впервые теоретическое обоснование общего недоразвития речи было сформулировано Р.Е. Л ...